Code: 20ES1502

III B.Tech - I Semester - Regular Examinations - DECEMBER 2022

DATA STRUCTURES AND ALGORITHMS (ELECTRONICS & COMMUNICATION ENGINEERING)

Duration: 3 hours Max. Marks: 70

Note: 1. This paper contains questions from 5 units of Syllabus. Each unit carries 14 marks and have an internal choice of Questions.

2. All parts of Question must be answered in one place.

BL – Blooms Level CO – Course Outcome

			BL	СО	Max. Marks				
	UNIT-I								
1	a)	Explain Asymptotic Notation with a neat	L2	CO1	7 M				
		diagram & example.							
	b)	Write a program to create a circular linked	L2	CO1	7 M				
		list and search for a given element and							
		append it to the end of the list.							
OR									
2	a)	Explain the notation of an algorithm & its	L2	CO1	7 M				
		properties.							
	b)	Discuss with an example the process of	L4	CO4	7 M				
		reversing a single linked list.							
	•								
		UNIT-II							
3	a)	Define the Abstract data type for Queue.	L2	CO2	7 M				
		Write algorithms to implement Queue ADT							
		using arrays.							

	1 \		T 0	000	7.7.6			
	b)	Write an algorithm for Evaluation of postfix	L2	CO2	7 M			
		expression with example.						
		53+62/*35*+						
OR								
4	a)	What is the advantage of circular queue	L2	CO2	7 M			
		over linear queue?						
	b)	Explain the algorithm for balancing of	L3	CO3	7 M			
		parenthesis with an example using stacks.						
TINITE TIT								
5	<u> </u>	UNIT-III Create Pinery Tree and Pinery Search Tree	12	CO2	7 14			
5	a)	Create Binary Tree and Binary Search Tree	L3	CO2	7 M			
		from the following lists of data items.						
		30, 20, 35, 95, 15, 60, 55, 25, 5, 65, 70, 10,						
	• •	40.	T. 0	000				
	b)	Write program for recursive In-order, pre-	L2	CO3	7 M			
		order & post-order traversal of binary search						
		tree.						
		OR		1				
6	a)	Explain about the procedure for BFS.	L2	CO3	7 M			
	b)	Explain various representations of a graph	L2	CO3	7 M			
		with suitable examples.						
		UNIT-IV						
7	a)	Write the Merge sort algorithm and sort the	L2	CO4	7 M			
		following elements. 41, 55, 34, 25, 15, 10,						
		48, 52, 69, 86.						
	b)	Write the procedure to implement binary	L2	CO4	7 M			
		search to search an element in an array and						
		its time complexity with an example.						
<u> </u>		· · ·		1 1				

OR									
8	a)	Explain solution to knapsack problem using	L2	CO4	7 M				
		Greedy method.							
	b)	Write about single source shortest path	L3	CO4	7 M				
		problem.							
	UNIT-V								
9	a)	Solve the following 0/1 knapsack problem	L4	CO5	7 M				
		by dynamic programming approach. Knap							
		sack with n=4 and m=8. $P = \{1,2,5,6\}$							
		$W = \{2,3,4,5\}.$							
	b)	Write the general method of dynamic	L2	CO5	7 M				
		programming.							
	OR								
10	a)	Write an algorithm for All Pairs Shortest	L2	CO5	7 M				
		Path Problem. Evaluate its time complexity.							
	b)	How do you solve travelling sales man	L4	CO5	7 M				
		problem using dynamic programming?							
		Explain with an example.							