III B.Tech - I Semester - Regular Examinations - DECEMBER 2022

DATA STRUCTURES AND ALGORITHMS (ELECTRONICS \& COMMUNICATION ENGINEERING)

Duration: 3 hours

Max. Marks: 70
Note: 1. This paper contains questions from 5 units of Syllabus. Each unit carries 14 marks and have an internal choice of Questions.
2. All parts of Question must be answered in one place.

BL - Blooms Level
CO - Course Outcome

			BL	CO	Max. Marks
UNIT-I					
1	a)	Explain Asymptotic Notation with a neat diagram \& example.	L2	CO1	7 M
	b)	Write a program to create a circular linked list and search for a given element and append it to the end of the list.	L2	CO1	7 M
OR					
2	a)	Explain the notation of an algorithm \& its properties.	L2	CO1	7 M
	b)	Discuss with an example the process of reversing a single linked list.	L4	CO 4	7 M
UNIT-II					
3	a)	Define the Abstract data type for Queue. Write algorithms to implement Queue ADT using arrays.	L2	CO 2	7 M

	b)	Write an algorithm for Evaluation of postfix expression with example. $53+62 / * 35 *+$	L2	CO2	7 M	
OR						

OR					
8	a)	Explain solution to knapsack problem using Greedy method.	L2	CO4	7 M
	b)	Write about single source shortest path problem.	L3	CO4	7 M
UNIT-V					
9	a)	Solve the following $0 / 1$ knapsack problem by dynamic programming approach. Knap sack with $\mathrm{n}=4$ and $\mathrm{m}=8 . \mathrm{P}=\{1,2,5,6\}$ $W=\{2,3,4,5\}$.	L4	CO5	7 M
	b)	Write the general method of dynamic programming.	L2	CO5	7 M
OR					
10	a)	Write an algorithm for All Pairs Shortest Path Problem. Evaluate its time complexity.	L2	CO5	7 M
	b)	How do you solve travelling sales man problem using dynamic programming? Explain with an example.	L4	CO5	7 M

